Patterns of intracellular calcium fluctuation in precursor cells of the neocortical ventricular zone.
نویسندگان
چکیده
Changes in intracellular free calcium concentration ([Ca2+]i) are known to influence a variety of events in developing neurons. Although spontaneous changes of [Ca2+]i have been examined in immature cortical neurons, the calcium dynamics of cortical precursor cells have received less attention. Using an intact cortical mantle and confocal laser microscopy, we examined the spatiotemporal patterns of spontaneous [Ca2+]i fluctuations in neocortical ventricular zone (VZ) cells in situ. The majority of activity consisted of single cells that displayed independent [Ca2+]i fluctuations. These events occurred in cells throughout the depth of the VZ. Immunohistochemical staining confirmed that these events occurred primarily in precursor cells rather than in postmitotic neurons. When imaging near the ventricular surface, synchronous spontaneous [Ca2+]i increases were frequently observed in pairs of adjacent cells. Cellular morphology, time-lapse imaging, and nuclear staining demonstrated that this activity occurred in mitotically active cells. A third and infrequently encountered pattern of activity consisted of coordinated spontaneous increases in [Ca2+]i in groups of neighboring VZ cells. The morphological characteristics of these cells and immunohistochemical staining suggested that the coordinated events occurred in gap junction-coupled precursor cells. All three patterns of activity were dependent on the release of Ca2+ from intracellular stores. These results demonstrate distinct patterns of spontaneous [Ca2+]i change in cortical precursor cells and raise the possibility that these dynamics may contribute to the regulation of neurogenesis.
منابع مشابه
Diversity of Neural Precursor Cell Types in the Prenatal Macaque Cerebral Cortex Exists Largely within the Astroglial Cell Lineage
The germinal zones of the embryonic macaque neocortex comprise the ventricular zone (VZ) and the subventricular zone (SVZ). The mammalian SVZ is subdivided into an inner SVZ and an outer SVZ, with the outer SVZ being particularly large in primates. The existence of distinct precursor cell types in the neocortical proliferative zones was inferred over 100 years ago and recent evidence supports t...
متن کاملGABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis
We have found that, during the early stages of cortical neurogenesis, both GABA and glutamate depolarize cells in the ventricular zone of rat embryonic neocortex. In the ventricular zone, glutamate acts on AMPA/kainate receptors, while GABA acts on GABAA receptors. GABA induces an inward current at resting membrane potentials, presumably owing to a high intracellular Cl- concentration maintaine...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملCalcium signaling in neocortical development.
The calcium ion (Ca(2+) ) is an essential second messenger that plays a pivotal role in neurogenesis. In the ventricular zone (VZ) of the neocortex, neural stem cells linger to produce progenitor cells and subsequently neurons and glial cells, which together build up the entire adult brain. The radial glial cells, with their characteristic radial fibers that stretch from the inner ventricular w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 14 شماره
صفحات -
تاریخ انتشار 1998